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Abstract

This report documents work done for Air Warrior to make simultaneous testing more

efficient. If N items are on test, then after r items a decision can be made as failure time are

reported. We show that at times r<.2N. This allows items to be reused if the test is non-

destructive. This test is ostensibly for electronic items, but is versatile and offers great

advantages for Army research testing the effectiveness of medications, vaccines, and other new

medications. It is possible to reject a drug or accept it with high power very quickly. It can also

be used to check if a deployment was especially dangerous and give warning to pay special

attentions to veterans of certain theaters.
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Abstract
We propose a methodology for gaining statistical inference on censored samples, especially

during the actual conduct of the lifetest experiment, in order to reduce cost and time on test

while preserving reasonable levels of statistical power, and in at least one case, the method-

ology has increasing statistical power of a censored sample over that of a full sample. The

outcome of the methodology will produce design efficiencies in lifetime testing. The method

is distribution free for any fully specified continuous distribution under the null hypothesis,

and produces p-values that are exact. Transforming ordered lifetest data into iid uniformly

distributed data on (0,1), we use the T, statistic, discussed in a companion paper (Glen and

Foote 2003), to gain inference on mean life of systems with resulting power increases of up

to 30% higher than that of the Anderson-Darling statistic. We investigate, with simulation,

the power of the method as r (the number of failures currently observed) increases to n. We

look specifically at null hypotheses from the exponential, normal, and gamma families of ran-

dom variables. We introduce an automated tool that allows for immediate implementation

of the new method using the probabilistic software package "A Probability Programming



Language" running in the Maple environment. We provide conclusions that will give insight

on how to gain statistical inference with less time and materiel on test. We also show a

counter-intuitive result where in certain cases, censored samples produce higher power than

full samples. We investigate this counter-intuitive result more fully.

Keywords: Computational Algebra Systems, Exact Distributions, Conditional Order

Statistics, Censored Lifetesting.

1 Introduction and Literature Review

In lifetesting applications, tests are designed to gain an understanding of the probabilis-

tic properties of a component or a system of components. Often, the costs of lifetests, in

both time and money, constrain the design of the experiment, limiting the number of items

placed on test and the length of the test. Many times, like in pharmaceutical drug testing,

the length of the experiment cannot be estimated accurately in advance, and often one is

faced with un-analysed, censored data in an ongoing experiment. For such cases we propose a

methodology that gives exact statistical inference on censored samples. Consider an existing

component, process, or drug with an all-parameters known lifetime reliability distribution

F(x). Should an improved component, process, or drug come along, both producers and

consumers would like to verify that the new item is better than the existing item, most often

by determining if its mean lifetime has improved (whether a decrease or an increase). In

the lifetesting of the new component, it would be highly desirable to stop the test when

enough evidence exists to support either claim. Such censoring, commonly called Type I

(stop after time t) or Type II (stop after r items fail), can produce statistical inference,

however, existing methods are not widely known, nor do they have remarkable statistical

power. We propose a methodology that will specifically rely on Type II censoring in the

design and conduct of the lifetest. If for example, one could afford a lifetest with n = 5

items to fail, a certain level of statistical power could be achieved if the test continued until

completion of n failures. Consider, however, an example where n = 25 items are placed on

test with r = 5 as the designated censoring value. Obviously the second test would conclude

more quickly, as the expected time on test would be the mean failure time of X(25:5), the
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fifth order statistic from a sample of 25 items, under the null hypothesis. Now consider a

slightly different example, where n = 25 items are placed on test. Experimenters notice

that after r = 3 failures, lifetimes seem to be substantially better than the original system.

After r = 6 failures, they are convinced, at least anecdotally, that the new system is better.

We propose a new methodology and a new test statistic that will allow for instantaneous

assessment at every failure, with exact p-values, from an exact distribution of the test statis-

tic. We rely on properties of conditional order statistic distributions to provide statistical

inference for censored data that has acceptable statistical power. We also show that for the

case of the Gamma distribution, given certain conditions, it is possible to achieve higher

power with a censored sample than it is for a full sample, a counter-intuitive result that

has warranted in depth investigation on our part. We use the test statistic T", presented

in a companion paper (Glen and Foote 2003), which has significantly more power than the

Anderson-Darling statistic, given changes in mean lifetime. The method we propose trans-

forms censored data, via two probability integral transforms (PITs) and conditional order

statistics, into an un-ordered, iid sample of uniformly distributed data on the open interval

(0,1), which we abbreviate U(0, 1). Furthermore, the test statistic T,, designed as a test

of uniformity, enjoys significantly higher power than the A-D statistic when finding differ-

ences in the mean of the distribution of the item in question, thus higher power is generally

possible by combining the censored methodology with the use of the T, statistic. The net

effect of combining the new statistic with the new methodology is an very strong advantage

in assessing censored data, to include the possibility of purposefully designing lifetests with

higher values of n so that the test can be censored early at a reasonable value of r, saving

time, money, and items that were destroyed during the test.

Rosenblatt (1952) presents theory that transforms joint conditional statistics to ordered,

uniformly distributed statistics for the censored case (we will instead transform censored data

to a complete un-ordered set of uniform data). David (1981) discusses the Markov nature

of conditional order statistics, and equates the conditional order statistic with the truncated

order statistic, a result that we will use as part of our method. O'Reilly and Stephens (1988)

use a Rosenblatt transform, then invert that transformed data to test ordered uniform data

(we will test un-ordered uniform data). Hegazy and Green (1975) present work on goodness-
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of-fit using expected values of order statistics with approximations used for critical values.

Balakrishnan, Ng, and Kannan (2002) present a test for exponentiality that is based on

progressively censored data, which uses a T statistic, however this statistic and this method

is unrelated to the T, statistic and the sequentially censored data analysis that we use.

Michael and Schucany (1979) also present a transformation that takes censored data and

transforms it into ordered uniform data. Since Michael as well as Stephens (1974) also point

out that the A-D statistic is generally more powerful than the other well-known goodness-

of-fit statistics in the case when the mean has shifted, we will rely on T•, which has even

higher power in detecting shifts in the mean than A-D, as shown our earlier, companion

paper (Glen and Foote, 2003).

2 Transforming the Censored Data into I1D U(O, 1)

Let the lifetime of an existing system (also that of the null hypothesis) be distributed by

the all-parameters known continuous rv X with CDF F(x). Let n items be on lifetest

and let the Type II censoring value be r. Recall that in a lifetest, failure data arrives in

ordered fashion. The ordered lifetime data x(i) have CDFs from their appropriate order

statistic Fx(,:.)(x(,,:j)), i = 1,2,... ,r, (note X(n:i) is abbreviated X(j)). Now consider the

conditional order statistics of the lifetest, X(i), X(2)IX(l),...., )X(,)X(,-I). Theorem 2.7 from

David (1981, pg. 20) explains the Markov nature of these conditional order statistics. Thus

for our purposes the CDF of the ith order statistic, given the (i- 1)th data point, F(x() Jx(-- 1)),

is that of the rv X(.-i+l:l) with support x(i-l) < x(j) < 1. David shows this is the first order

statistic from a sample size n - (i - 1) from the parent distribution of X truncated on the left

at x(i-1). In other words, the distribution is independent of X(1), X(2),... X(i-3), and X(i-2),

and is therefore memoryless in this regard. Since each of the conditional distributions can

be computed, conducting separate PITs on each data value, Fx(,)lx(,_ )(x(i)), i = 2, 3,. .. , r

will give a sample of r iid U(0, 1) random variables (see Rosenblatt 1952, pg. 470) to which

a uniformity test can be applied. As mentioned earlier, we use Tn, as it is better at finding

changes in px than A-D in many cases (Glen and Foote, 2003). The statistic Tn has the

distribution of the convolution of n iid U(0, 1) random variables. Therefore, the test statistic
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we will use is as follows:
r

Tr. = E~()x,_jii)

where Fx(1) IX(o) is defined to be Fx(1), and r is the size of the censored sample.

3 Implementation using APPL

The theory of the statistic is straightforward, however the implementation is made practi-

cable only with automated probabilistic software. We implement the new method and new

statistic in APPL (Glen, et. al. 2001) for a number of reasons. The software allows us to use

exact distributions of the original data, the distributions of the conditional order statistics,

and the distribution of the T, statistic so that exact p-values are attainable. Additionally,

the author has already calculated the PDFs of the sum of n U(0, 1) random variables from

n = 1 to n = 50, the last PDF requiring 91 pages of ASCII text to enumerate. APPL reads

these PDFs exactly and can thus compute the exact p-values. APPL allows for the use of

any continuous distribution (well-known distributions as well as ad hoc) to specify the null

hypothesis and conducts the necessary PITs for these distributions. We will demonstrate

power of the censored and full samples using Tn and A-D statistics with data from the Nor-

mal, Exponential, and Gamma prior distributions, however we are not limited to just these

distributions.

The methodology can be confusing to those not used to using conditional order statistics,

thus we present more clearly the algorithm for computing the test statistic.

* Specify the null distribution of the existing (old) system, F(x).

* During the lifetest experiment, note n and create the vector of r observed occurrences.

* Calculate z(i) = F(x(i)), i = 1, 2, ... , r, which is ordered uniform (not iid).

* Calculate the unordered, iid U(0, 1) (under the null hypothesis) ui = Fz(,)Iz(,(1) (z(i)), i =

1, 2,..., r. Note: we perform the PIT with F(x) and then conduct the conditional order

statistics PIT using the uniform conditional order statistic distributions. These two

methods have been shown to be equivalent (Glen, et. al., 2001), but this method is
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preferred as the conditional order statistics of the uniform distributions are much more

tractable than conditional order statistics using the parent distribution F. Also note,

we find the conditional order statistic using the truncation of the parent distribution

method outlined by David (1981).

"* Sum the ui values to get the Tr statistic.

"* Calculate the p-value with the appropriate tail of the T, distribution.

The APPL code that enacts this algorithm to calculate the statistic is as follows:

# take the r censored values in 'data' and PIT them into the list 'Zdata'

for i from 1 to r do

Zdata := [op(Zdata), CDF(Nulldist, data[i])];

od;

# sum the independent uniforms to for the statistic 'Lstat' starting with the first failure ...

t-stat:=CDF(0rderStat(U(O, 1), n, 1), Zdata[11);

# ... then adding up the subsequent failures until r is reached.

if (r > 1) then

for i from 2 to r do

t-s'tat := t-stat + CDF(OrderStat(TruncateC(U(O,1), evalf(Zdata[i-11), 1),

n - (i - 1), 1), Zdata[i]);

od;

fi;

Tr-distn := cat('T',r);

# now return the statistic, the lower tail pvalue and the upper tail pvalue

# using the APPL command 'CDF'

RETURN(t-stat, CDF(Tr-distn, t-stat), 1 - CDF(Tr-distn, t-stat));

This APPL code is implemented in a new APPL procedure called CensoredT and its use

is illustrated in the example that follows. Assume there exists a medical treatment that has

an established time-to-healing record that is modeled by the Gamma(2.1, 4.41) distribution,

where time is measured in years. A new treatment is developed and experimenters hope
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to show an improvement (decrease) in healing time. The new treatment is administered to

n = 25 patients, and it is noted that the first five healing times are 0.40, 0.54, 0.66, 0.75, 0.84

years. Completion of the full experiment, under the null hypothesis, has an expected time

of E(X(25)) - 4.52 years, the expected healing time of the slowest patient to heal. However,

the fifth patient's expected healing time, under the null hypothesis, is E(X(5)) - 1.21 years.

Since the observed time of the fifth patient's healing was only 0.84 years, it would useful to

know if there is enough statistical evidence to stop the experiment, concluding that the new

treatment is better. The following APPL code will analyse this Type-II censored experiment:

> Old-Treatment := GammaRV(2.1, 4.41);

> n : 25;

> data := [0.40, 0.54, 0.66, 0.75, 0.84];

> CensoredT(OldTreatment, data, n);

The procedure output is the test statistic, the lower tail p-value and the upper tail p-value.

In this case those values are 1.309743, 0.031999, 0.968001. Since we are interested in the

lower tail, we have a p-value of 0.031999, significant evidence that the new treatment is

better and we can consider terminating the experiment.

4 Power simulation results

In this section, we discuss the results of various power simulations to see the effect of in-

creasing r on the power of the test. We will use the T, statistic and benchmark it against

the A-D statistic. In the case of the Exponential and Normal prior distributions, power

tests confirmed what was expected: as r increased, the power of the test increased, but

never exceeded the power of letting all n components fail. In the case of the Gamma prior

distribution, however, a non-intuitive result was observed. Power initially increased as r

increased, but then started to decrease after reaching a 'maximum' power. Even more un-

expectedly, in certain cases of parameter values, the maximum power of the mid-values of

r was actually higher that the power of the full sample. We have investigated some of this

unexpected phenomena and report on it below, as the implications of more power with lower

r is very significant.
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To implement this simulation, we wanted to set up the experiment so that, where pos-

sible, the underlying data had changing p, but constant u2. We fixed o2 so that we could

see if we could spot a change in p by itself. This ability to detect a change is Ai is helpful to

lifetesters who have a new component that they would like to show superior to an existing

component with a well defined distribution and well established p. In the case of Exponen-

tially distributed data, we could not fix a.2 as u 2 = A2. We are able to fix 0,2 for the Normal

and Gamma distributions. Table 1 shows the parameter values, as well as p, and a2 for the

Exponential, Normal, and Gamma distributions that were used in the power experiment.

Table 1: Distribution families, parameters, mean and variances for Monte Carlo Simulation

Normal Distribution, H0 : 1 = 1, fixed o- = 1

Pa -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

Exponential Distribution, H0 : A = = 1

Aa= 1 0.4 .6 0.7 0.8 0.9 1.25 1.5 1.9 2.3 2.7-Iua

Gamma Distribution, H0 : a = I = 2.1, 3 = 4.41 fixed a = 1

aa -- a 1.1 1.3 1.5 1.7 1.9 2.3 2.5 2.7 2.9 3.1

Pa 1.21 1.69 2.25 2.89 3.61 5.29 6.25 7.29 8.41 9.61

As we see in the Normal and Exponential cases (Figures 1 and 2), higher r values produced

higher power. Also, as can be seen in Figures 2 and 3, the T, statistic produced higher power

than the A-D statistic except for the extremely high values of p (though not shown in Figure

1, the same result was observed for the Normal distribution). This switch is interesting since

in the full sample experiments from the companion paper, The T, appeared to always be

higher in power than the A-D statistic.

A very counter-intuitive phenomena occurs with the Gamma distribution. Highest power

for censored samples appears to come approximately r = 10 and then decrease as r ap-

proaches n. This result happened for the T, and the A-D statistics. An enlargement of

Figure 3 is shown in Figure 4 that further shows that the power increases then decreases.

Figure 4 clearly shows that power starts out moderately at r = 5, then seems to achieve

a maximum at r = 10 (for both statistics) then clearly decreases by the time r = 20 and

r = 25. (Note the conditional order statistic approach at r = n appears to be a different,

8



less powerful statistic than the full sample for Gamma prior.) Most striking was that, for

some values of [La lower than po we have achieved higher power for the censored, r = 10,

case than we did for the full sample. As this is very counter-intuitive, we experimented

in detail the case where the Gamma parameter a = 1.7 and calculated the power for each

value of r = 1, 2,..., 25. The results of this in depth simulation are shown in Figure 5.

Here we clearly see both phenomena occur: 1) power increases until approximate r = 9,

then it decreases, and 2) for values for r = 6, 7, 8, 9, and 10 power for the censored sample

is at least has high or higher than power for the full sample. A note on the simulations: as

these Gamma prior results were so counter-intuitive that our colleagues have had difficulty

believing that a censored sample could possibly produce higher power than a full sample, we

have re-designed and re-run this experiment a number of times over the last year, achieving

similar results each time. For a copy of the simulation code, readers may contact the first

author.

5 Applications and Implications

This methodology has potential for significant advances in reliability engineering lifetesting,

pharmaceutical drug tests, or any sort of experiment where data comes naturally in ordered

form. The sequential testing ability allows for a test to be terminated early, hence ending a

dangerous experiment or giving early vindication allowing an effective therapy to go to mar-

ket earlier. In particular, if a new therapy or component is more effective than the old, early

failures may be remarkably small or large. This will result in acceptance and termination

without running until all cases have failed. The test can then be used to accept the new

component or medical treatment. Similarly, a few early failures can render a judgment and

the remaining patients can be switched to potentially better therapies. Other implications

of this research is as follows:

"* Good statistical power for censored samples is possible for a wide ranges of experiments.

"* Experiments can be designed for high n values, knowing that they will stop at a pre-

determined, relatively small r value.
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* Experiments can be tracked real-time to see a pattern of p-values that indicates enough

inference has been gained.

* With a Gamma prior distribution, higher power is achieved in censored samples than

with full samples in some cases.

6 Conclusions

A new goodness of fit methodology has been developed and tested. Significant increases in

power on the order of 30% have been found compared to the standard Anderson - Darling

statistic. Also, relatively high power is achieved using the T" statistic on censored samples,

allowing for lifetests to be terminated early. Finally, in at lease one special case, that of

a Gamma prior, a phenomena has been found, that at approximately r = 0.4 n, power is

greater that with a full sample.

7 Topics of Further Research

The cause of the phenomena revealed by validation testing of the slightly higher power in

one special case needs to be further investigated. A possible basis for the explanation lies

in the variance of successive, truncated order statistics, when data that originates from the

alternate hypothesis is passed through the PIT of the Gamma distribution based on the

null hypothesis. Somehow, the transformation of the data has a different characteristic than

when is it passed thru a PIT based on a null hypothesis with, say, an Exponential prior.

Also, further research is needed to investigate how high to set n and r in experimental design,

in order to gain possible advantages in lower time on test, lower cost, and fewer failed items

as a result of the experiment. For example, if a budget can afford 25 items failing, perhaps

it would be more effective to put 50 items on test, knowing ahead of time that the desired

increase on p should be evident by about the r = 1 0 th failure. Clearly a time savings and
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component savings is evident here. Finally, one of our goals was to find the exact power

functions instead of using simulation of power. Due to the complexity of sending data from

one distribution thru the PIT of another, the resulting transformations were so complicated

that we could only find the exact power function for the Exponential prior with r = 2.
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Figures

Normal Power Simulation, N =25, r = 5 (5) 25

Power

Full sample T
Full sample T

------ ---- ------------------ o- 9 ----------------- ---- ---------- ---

----- -- ----------------------o-.8--------------------------- ------- -
-15,20 ,2 5

-------------------- --- 0-.------------ --.7- ---------------- ----- ----- -----

----------- --------------------- 0-.6 --------------------- ---- ---- -- --------
T_10

--------------------- -.----------- --.6- ------------ --- ------------ ------

--------------------------. 4---------------------- --------

----------------- ------ -- ------- 0-.4 --------------- --------------------------

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 1: Results of Monte Carlo power simulation with underlying normally distributed

data, o, = 1 and type I error a~ = 0.05. Under H0, I.L = 0. Only the T,, results are shown.

Notice how well behaved the power functions are, in that higher r produced higher power.
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Exponential Power Simulation

PowerFull Sample

and Tr=2s

0.900 - - -- - - - - - - - - - - - - - - - - - --- ----a -- - - - - - - - -- _7 ,-2o.

A-D Full and A-D1325

0 .7 0 0 -. .. . . . . . ..--- - -

0 .6 0 0. . . . . . . . . . . . . . .. .
A-D-+0

0.600 ---- -- - --- T,---
A-D-is"

0.500 ......... A0D r jo ------- -- - --

0.400 8 --- - A 1.3 1.8•- - . 32. 8

0 .30 0 . . . . .. . . . . . . . . . .- - - - - - - - - - ---- - -- - - - - - - -

0 .0 0 0 A.. . _ . . . .

Figure 2: Results of Monte Carlo power simulation with underlying exponential distributed

data with type I error a 0.05. Under HO, the exponential distribution has parameter

A =1. Thus, the upper tail test applies to the lower A,, values. Notice that, like

the Normal distribution, higher power is achieved for higher r values. Also notice how T,

achieves higher power than A - D, except for low values of A,, (high values of p,,))
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Gamma Power Simulation

Enlarged Area

Full sample T

0.9 -- - - - - - - -

Full sample a

0.8 -~~~---------------- --------------- ----------- ------------
0. -- - -- - - -- - - .- .. - - -- -;-- - - -- - - -" -

0.6 - - - -- - - - -4 - - - - - - - - - - -
0.7 .. . .. . .r---0

L 0...... -------ix t)0.4 ---------- --

A-D,5

0 .4 - - - - - - - - - - - - - - - - - -- - - - - - - - -- -------
0.3

"0.-1-,.. . .. "

1 1.5 2 2.5 3

Figure 3: Results of Monte Carlo power simulation with underlying Gamma distributed

data, o = 1 and type I error a = 0.05. Under H0 , the Gamma distribution has parameters

a= p= 2.1 and 3 = 4.41. Here the counter-intuitive result of higher power comes from

r 10 and then decreases as r > 10 for both the T, and the A - D test statistics. This

phenomena is evident in the enlarged area shown in figure 4.
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Enlarged area of Gamma power

Full Sample T

FulSimuplaed nfrhr 1

A - D % T , 15,

"detail, see Fi"

A-Dr=ýo5, "

A-D 120\ , i"

A-Dr=25

Simulated in frher '
detail, see Figure 5 •/ ,

0.4
1.52

Figure 4: This enlarged area shows clearly the case that Tr10 has higher power than even

the full sample T,25. Thus we see the counter-intuitive result that under certain conditions

an experiment can actually achieve higher power with a censored sample than with a full

sample. Further investigation of this phenomenum at a higher resolution of r is found in

Figure 5.
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Power
I New Statistic,

New Method (Censored Sample)

0.9
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0.4 Old Method (Full Sample)
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Figure 5: In an in depth experiment suggested from Figure 4, here is a plot of r versus power

for each value of r = 1 (1) 25 for I.La < 1LO. Note the two phenomena that 1) power increases

on r then decreases for both statistics and 2) the special cases at r = 6, 7, 8, 9, and 10 where

higher power is achieved in a censored sample than with a full sample.
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ABSTRACT

We propose a methodology for gaining statistical inference during the actual conduct of

the lifetest experiment that can reduce time on test and cost. We also present a test for

uniformity based on the convolution of iid uniform random variables that complements the

new methodology, producing design efficiencies in lifetime testing. The method is distribu-

tion free for any fully specified continuous distribution under the null hypothesis, and the

distribution of the test statistic is calculated analytically, thus producing exact p-values. In

certain non-intuitive cases, the methodology and statistic provide higher power for censored

samples than for the complete samples. We achieve significant increases in power over the
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benchmark Anderson-Darling statistic.

Keywords: Computational Algebra Systems, Conditional Order Statistics.

1 Introduction and Literature Review

In lifetesting applications, tests are designed to gain an understanding of the probabilistic

properties of a new drug, treatment, mechanical component or a system of components.

Often, the costs of lifetests, in both time and money, constrain the design of the experiment,

limiting the number of items placed on test and the length of the test. Many times, such

as in the cases of pharmaceutical drug testing, the length of the experiment cannot be

estimated accurately in advance, and often one is faced with un-analyzed, censored data in

an ongoing experiment. For such cases we propose a methodology that gives exact statistical

inference on censored samples. Consider an existing drug, process, or component with an all-

parameters known lifetime reliability distribution F(x). Should an improved drug, process,

or component come along, both producers and consumers would like to verify that the new

item is better than the existing item, most often by determining if its mean lifetime has

improved (whether a decrease or an increase). In the lifetesting of the new item, it would be

highly desirable to stop the test when enough evidence exists to support either claim. Such

censoring, commonly called Type I (stop after time t) or Type II (stop after r items fail), can

produce statistical inference, however, existing methods are not widely known, nor do they

have remarkable statistical power. We propose a methodology that will specifically rely on

Type II right censoring in the design and conduct of the lifetest. If for example, one could

afford a lifetest with n = 5 items to fail, a certain level of statistical power could be achieved

if the test continued until completion of n failures. Consider, however, an example where

n = 25 items are placed on test with r = 5 as the designated censoring value. Obviously
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the second test would conclude more quickly, as the expected time on test would be the

mean failure time of X( 25 :5 ), the fifth order statistic from a sample of 25 items, under the

null hypothesis. Now consider a slightly different example, where n = 25 items are placed on

test. Experimenters notice that after r = 3 failures, lifetimes seem to be substantially better

than the original system. After r = 6 failures, they are convinced, at least anecdotally,

that the new system is better. We propose a new methodology and a new test statistic

that will allow for instantaneous assessment at every failure, with exact p-values, from an

exact distribution of the test statistic. We rely on properties of conditional order statistic

distributions to provide statistical inference for censored data that has acceptable statistical

power. We also rely on the advances of computer algebra systems, especially A Probability

Programming Language (APPL, Glen et. al., 2001) as our technique requires calculating

many CDFs of these conditional order statistics as well as the very complicated distribution

of the test statistic, all of which result in exact p-values for inference. We also show that for

the case of the prior Gamma distribution, given certain conditions, it is possible to achieve

higher power with a censored sample than it is for a full sample, a counter-intuitive result

that has warranted in depth investigation on our part. The method we propose transforms

either a full data set or a censored data set, via two probability integral transforms (PITs)

and conditional order statistics, into an un-ordered, iid sample of uniformly distributed

data on the open interval (0,1), which we abbreviate U(0, 1). The test statistic T", based

on the sum of U(0, 1) random variables (rvs) and designed as a test of uniformity, enjoys

significantly higher power than the A2 statistic when finding differences in the mean of the

distribution of the item in question, thus higher power is generally possible by combining

the censored methodology with the use of the T, statistic. The net effect of combining the

new statistic with the new methodology is a very strong advantage in assessing censored

data, that includes the possibility of purposefully designing lifetests with higher values of n
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so that the test can be censored early at a reasonable value of r, saving time, money, and

items that were destroyed during the test.

Testing for uniformity in a sample has many applications, many of which are explained

in Chapter 8 of Goodness-of-fit Techniques, (D'Agostino and Stephens, 1988). Rosenblatt

(1952) presents theory that transforms joint conditional rvs to ordered, uniformly distributed

rvs for the censored case (we will instead transform censored data to a complete un-ordered

set of uniform data). David (1981) discusses the Markov nature of conditional order statistics.

He explains the ability to convert conditional order statistics into specific truncated order

statistics, a result that we will use as part of our method. O'Reilly and Stephens (1988) use

a Rosenblatt transform, then invert that transformed data to test ordered uniform data (we

will test un-ordered uniform data). Hegazy and Green (1975) present work on goodness-

of-fit using expected values of order statistics with approximations used for critical values.

Balakrishnan, Ng, and Kannan (2002) present a test for exponentiality that is based on

progressively censored data, which uses a T statistic, however this statistic and this method

is unrelated to the T, statistic and the sequentially censored data analysis that we use.

Michael and Schucany (1979) also present a transformation that takes censored data and

transforms it into ordered uniform data. Since Michael as well as Stephens (1974) also point

out that the A2 statistic is generally more powerful than the other well-known goodness-of-fit

statistics in the case when the mean has shifted, we will compare the power of T, with that

of A2 to show even higher power in detecting shifts in the mean than A2 .

2 The Test Statistic

The test statistic we propose, T,, has the distribution of the convolution of iid U(O, 1) rvs:

n n

Tn U = Fx4(Xi).
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Prior to settling on this statistic, we explored other functions of iid U(O, 1) rvs. One option we

explored was finding the distribution of C - • csc(Uj), as the cosecant function magnifies

the statistic when the tails are too fat. The magnification happens at a quicker rate than

that of - ln(U), and we found this statistic had slightly higher power than A2 , when testing

for shifts in oa away from ao. The statistic had appreciably less power, though, when testing

for changes in ft, a fact geometrically understandable, as the changes in p do not exaggerate

the test statistic quickly. Furthermore, the exact distribution of C could not be found, and

critical points had to be estimated with Monte Carlo simulation, an inconvenience we wanted

to avoid. We also considered min(Uj) and E71 tan(Uj) and found similarly unremarkable

results.

We found considerable success with the test statistic T = 1U as a test for unifor-

mity. Finding the distribution of the convolution of n iid U(O, 1) random variables becomes

intractable by hand, once n > 4. However, by using APPL, we are able to determine the

exact distribution of Tn for reasonable sample sizes. The distribution of Tn has n segments

describing the PDF. Thus, the distribution of T2 (the standard triangular distribution) has

two segments, T3 has three, and so on. As an example of a complete PDF not easily found

by hand but possible in the APPL environment, the distribution of T7 is as follows:

1 x6

7 2 04<x<

7 X2 + 7 3 _ 7X4 7 i6 _ x -< 2
48 36x + T 8 -X 120~ 2-0~ 2-0

1337 _ 133 +29 X2 16 3 77 X4 X i 6720 24 48 Y6x+ 48 4x45+< x<6
_( 12089 + 196 1253 2 96 _ 119 X4 7_ X 6 3 < x < 4

360 3 42 +9 24 36 3+-<

59591 700 3227 2 364 x3 161 4 7 5 + 6 4 < < 5
360 23 2- 9 24 -2 4

208943 + 7525 X _ 6671 X2 1169 X3 _ 203 4 + - X5 - 1 X6
720 +24 485  + 3 6  7 8-X +24 12-0 5< x< 6

117649 16807 3424012 X3 +8 -9 X4 7 5 67
720 10 48 6•- - 48 l24 0 720

Interestingly, the PDF of T50 requires 91 pages of ASCII text to express. The distribution of
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Tn for n < 50 can be found at the first author's web site, ww. dean. usma. edu/math/people/glen.

Since the distribution of Tn is exactly known, the exact critical values are calculable, and

exact significance levels are attainable for any sample of data. Tables of critical values used

for our power simulations are available from the first author and are left out of this paper

for brevity. However, as APPL can find exact p-values for these distributions, tables such as

these are becoming less necessary.

3 The Methodology

Let the lifetime of an existing system (also that of the null hypothesis) be distributed by

the all-parameters known continuous rv X with CDF F(x). Let n items be on lifetest and

let the Type II right censoring value be r. Recall that in a lifetest, failure data arrives in

ordered fashion. The ordered lifetime data x(i) have CDFs from their appropriate order

statistic Fx(,n:i)(X(n:i)), i = 1, 2, ... , r, (note X(n:i) is abbreviated X(0). In his work on order

statistics, David (1981, pg. 21) explains two useful properties that we employ. First, order

statistics form a Markov chain, in that for r < s,

fx(,)IX(r)=X(,),X(_,r)=X(,..) ,...,X(l)=X(l)(Y) = fx(ý) IX()=X(r) (Y)"

Second, finding the distribution of these order statistics is made simpler with truncation.

Theorem 2.7 on the same page of David's text explains "For a random sample of n from

a continuous parent conditional distribution of X(,), given X(,) = x (s > r), is just the

distribution of the (s-r)th order statistic in a sample of n-r drawn from f(y)/[1-F(y)] (y >

x), i.e., from the parent distribution truncated on the left at x." Thus for our purposes the

CDF of the ith order statistic, given the (i - 1)th data point, F(x(i)Ix(i-l)), is that of the

rv X(n-i+1:1) with support x(i--) < x(0 < 1. David shows this is the first order statistic

from a sample size n - (i - 1) from the parent distribution of X truncated on the left at

6



X(-- 1 ). In other words, the distribution is independent of X(1), X( 2 ), ... , x(i- 3), and X(i- 2 ), and

is therefore memoryless in this regard. Since each of the conditional distributions can be

computed, conducting separate PITs on each data value, FX(,)lz(,_,) (x( ), i = 2, 3, . . ., r will

give a sample of r iid U(0, 1) random variables (see Rosenblatt 1952, pg. 470) to which a

uniformity test can be applied. As mentioned earlier, we use T,, as it is better at finding

"changes in MX than A2 in many cases. So we will consider this statistic, renamed Tr to

denote that it comes from a censored sample, which is shown to also have the distribution

of the convolution of r iid U(0, 1) random variables. Therefore, Tr is found as follows:

r
T= Fx(,)Ix(_l) (x(j),

where Fx(1)IX(o) is defined to be Fx(1), and r is the size of the censored sample.

4 Implementation using APPL

The theory of the statistic is straightforward, however due to the requirement for multiple

exact distribution functions that have support values which depend on the data, the imple-

mentation is made practicable only with automated probabilistic software. We implement

the new method and new statistic in APPL (Glen, et. al. 2001) for a number of reasons.

The software allows us to use exact distributions of the original data, the distributions of

the conditional order statistics, and the distribution of the T, statistic so that exact p-values

are attainable. Additionally, the author has already calculated the PDFs of the sum of n

U(O, 1) random variables from n = 1 to n = 50. APPL reads these PDFs exactly and can

thus compute the exact p-values. APPL allows for the use of any continuous distribution

(well-known distributions as well as ad hoc) to specify the null hypothesis and conducts

the necessary PITs for these distributions. APPL calculates the CDFs of order statistics

as well as truncated distributions. We will demonstrate the power of the censored and full
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samples using T, and A2 statistics with data from the Normal, Exponential, and Gamma

prior distributions, however we are not limited to just these distributions.

The methodology can be confusing to those not used to using conditional order statistics,

thus we present more clearly the algorithm for computing the test statistic.

e Specify the null distribution of the existing (old) system, F(x).

* During the lifetest experiment, note n and create the vector of r observed occurrences.

* Calculate z(i) = F(x(i)), i = 1, 2, ... , r, which is ordered uniform (not iid).

* Calculate the unordered, iid U(0, 1) (under the null hypothesis) ui = Fz()I z(, (z(0), i =

1, 2, ... , r. Note: we perform the PIT with Fi(x) and then conduct the conditional order

statistics PIT using the uniform conditional order statistic distributions. These two

methods have been shown to be equivalent (Glen, et. al., 2001), but this method is

preferred as the conditional order statistics of the uniform distributions are much more

tractable than conditional order statistics using the parent distribution F. Also note,

we find the conditional order statistic using the truncation of the parent distribution

method outlined by David (1981).

* Sum the ui values to get the T, statistic.

* Calculate the p-value with the appropriate tail of the T, distribution.

The APPL code that enacts this algorithm to calculate the statistic is as follows:

# take the r censored values in 'data' and PIT them into the list 'Zdata'

for i from 1 to r do

Zdata := [op(Zdata), CDF(Nulldist, data[i])];

od;

# sum the independent uniforms to for the statistic 't-stat' starting with the first failure ...
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t-stat:=CDF(OrderStat(U(0, 1), n, 1), Zdata[1]);

# ... then adding up the subsequent failures until r is reached.

if (r > 1) then

for i from 2 to r do

t-stat t=t.stat + CDF(OrderStat (Truncate(U(0, 1), evalf(Zdata[i-1]), 1),

n- ( 1-), 1), Zdata[i]);

end do; end if;

Tr-distn := cat('T',r);

# now return the statistic, the lower and upper tail p-values using APPL's 'CDF' command

RETURN(t-stat, CDF(Tr-distn, t-stat), 1 - CDF(Tr.distn, t-stat));

This algorithm is implemented in a new APPL procedure called CensoredT and its use is

illustrated in the example that follows. Assume there exists a medical treatment that has

an established time-to-recover record that is modeled by the Gamma(2.1, 4.41) distribution,

where time is measured in years. A new treatment is developed and experimenters hope

to show an improvement (decrease) in recover time. The new treatment is administered to

n = 25 patients, and it is noted that the first five recover times are 0.40, 0.54, 0.66, 0.75, 0.84

years. Completion of the full experiment, under the null hypothesis, has an expected time

of E(X(25)) P 4.52 years, the expected recover time of the slowest patient to heal. However,

the fifth patient's expected recover time, under the null hypothesis, is E(X(5)) P 1.21 years.

Since the observed time of the fifth patient's recover was only 0.84 years, it would useful to

know if there is, enough statistical evidence to stop the experiment, concluding that the new

treatment is better. The following APPL code will analyze this Type-II censored experiment:

> Old-Treatment GammaRV(2.1, 4.41);

> n := 25; data [0.40, 0.54, 0.66, 0.75, 0.84];

> CensoredT(OldTreatment, data, n);
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The procedure output is the test statistic, the lower tail p-value and the upper tail p-value.

In this case those values are 1.309743, 0.031999, 0.968001. Since we are interested in the

lower tail, we have a p-value of 0.031999, significant evidence that the new treatment is better

and we can consider terminating the experiment. For the exact calculations, to include the

CDFs needed to compute this p-value, see the Appendix.

5 Power Simulation Results

In this section we discuss the results from extensive power experiments that compare full

samples and censored samples of the T, and T, statistics versus the A2 statistic. We rely on

previous power studies by Stephens (1974) and Michael and Schucany (1979) that establish

the A2 statistic as generally more powerful than other statistics in testing for uniformity,

especially when detecting a shift in 1L. These other statistics include the Kolmogorov-Smirnov

D, D+, and D- statistics, the Cram6r-von Mises W 2 statistic, the Kupier V statistic, and

the Watson U2 statistic. As the A2 statistic is generally more powerful than these statistics,

we opine that it is sufficient to benchmark the new T, statistic against the A2 to show even

more significant increases in power. We are interested in finding shifts in P0 given the all

parameters known null hypothesis that X has CDF Fx(x). As our intended purpose for the

test statistic is to assist in the lifetesting task of finding changes in mean lifetime of items on

test, this power simulation varies i, from ILO, but fixes the standard deviation, where possible.

We chose the Normal, Exponential and Gamma distributions as parent distributions for our

null hypotheses. In the case of the Normal and Gamma distributions, we fixed ro- = 1 and

only varied y above and below p0. In the case of the Exponential, we have no choice but

to vary Pa and a,, as both depend on the parameter A. We were interested in performing

a similar simulation with the Weibull distribution, however, fixing ao and varying p is not
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always possible, since the Weibull parameters are not readily solved for in such a manner, as

not all combinations of mean and variance are possible with the Weibull distribution. Table

1 gives the various parameters, means, and variances, for each simulation of the Normal,

Exponential, and Gamma null hypothesis distribution. Figures 1 thru 5 give the graphical

results of our simulation. The T, statistic for the full sample is denoted with the solid bold

lines, while the Tr statistic for censored samples is denoted with the solid non-bolded lines.

The A2 full sample is denoted by the dashed bolded lines, while the A2 censored sample is

denoted by the dashed non-bolded lines. For the full sample simulation we chose sample

sizes of n = 5 and n = 25 and compared the results of the A2 and T" tests. The results show

significant improvement in power for all three distributions. For example, in the Normal

power experiment, where n = 5 and pa = 0.6, the power for A2 is 26% and the power for

Tn is 37%, a 42% increase in power. Similarly in the Gamma experiment, where n = 25

and Ma = 2.3, the power increase is from 17% to 28%, a 64% increase in power over the A2

statistic. The full sample cases where n = 25 are shown in bold lines in Figures 1 thru 5,

however the cases where n = 5 were omitted form the figures to avoid clutter. All tabular

results from the simulations are available from the first author.

As we see in the Normal and Exponential cases (Figures 1 and 2), higher r values produced

higher power. Also, as can be seen in Figures 2 and 3, the T, statistic produced higher power

than the A 2 statistic except for the extremely high values of p (though not shown in Figure

1, the same result was observed for the Normal distribution). This switch is interesting since

in the full sample experiments from the companion paper, The T, appeared to always be

higher in power than the A2 statistic.

A very counter-intuitive phenomena occurs with the prior Gamma distribution. The

highest power for censored samples appears to come at approximately r = 10 and then

decreases as r approaches n. This result happened for the Tr and the A2 statistics. An
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enlargement of Figure 3 is shown in Figure 4 that further shows that the power increases

then decreases. Figure 4 clearly shows that power starts out moderately at r = 5, then seems

to achieve a maximum at r = 10 (for both statistics) then clearly decreases by the time r = 20

and r = 25. (Note the conditional order statistic approach at r = n appears to be a different,

less powerful statistic than the full sample for Gamma prior.) Most striking was that, for

some values of Ma lower than / 0 we have achieved higher power for the censored, r = 10,

case than we did for the full sample. As this is very counter-intuitive, we experimented in

detail for the case where the Gamma parameter was a = 1.7 and calculated the power for

each value of r = 1, 2,..., 25. The results of this in depth simulation are shown in Figure 5.

Here we clearly see both phenomena occur: 1) power increases until approximately r = 9,

then it decreases, and 2) for 6 < r < 10 power for the censored sample is at least has high

or higher than power for the full sample. A note on the simulations: as these Gamma prior

results were so counter-intuitive, we have re-designed and re-run this experiment a number

of times over the last year, achieving similar results each time. For a copy of the simulation

code, readers may contact the first author.

An important note involves the complexity of this Monte Carlo simulation. The simu-

lation requires, among other things, the CDF of the prior distributions (non-trivial in the

case of the Gamma), the ability to conduct a PIT on the data, the exact CDFs of truncated

order statistics created from the data, and the exact distribution of the test statistic. None

of this is currently possible outside of a computer algebra system, certainly not in well known

statistics software packages. To see some of these distributions and to get an appreciation

for the simplest case of r = 5 see the example in the Appendix.
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6 Applications and Implications

This methodology has' potential for significant advances in medical and reliability engineering

lifetesting, pharmaceutical drug tests, or any sort of experiment where data comes naturally

in ordered form. The sequential testing ability allows for a test to be terminated early, hence

ending a dangerous experiment or giving early vindication allowing an effective therapy to

go to market earlier. In particular, if a new therapy or component is more effective than

the old, early failures may be remarkably small or large. This will result in acceptance

and termination without running until all cases have failed. The test can then be used to

accept the new component or medical treatment. Similarly, a few early failures can render a

judgment and the remaining patients can be switched to potentially better therapies. Other

implications of this research are as follows:

"* Good statistical power for censored samples is possible for a wide range of experiments.

"* Experiments can be designed with intentionally large values of n, knowing that they

will stop at a predetermined, relatively small value of r.

"* Experiments can be tracked real-time to see a pattern of p-values that indicates enough

inference has been gained.

"* With a Gamma prior distribution, higher power is achieved in censored samples than

with full samples in some cases.

"* Computer algebra systems are adept enough for computing the multiple CDFs needed

for such a statistic and methodology to be practical in its implementation.
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7 Conclusions and Further Research

A new goodness of fit methodology and a new uniformity test statistic has been developed

and tested. Significant increases in power have been found compared to the benchmark

Anderson-Darling statistic. Additionally, exact p-values for this test statistic are achievable.

Also, relatively high power is achieved using the T, statistic on censored samples, allowing

for lifetests to be terminated early. Finally, in at least one special case, that of a Gamma

prior, a phenomena has been found, that at approximately r = 0.4 n, power is greater than

with a full sample. The cause of the phenomena in which censored samples give higher power

than full samples needs to be further investigated. A possible basis for the explanation lies

in the variance of successive, truncated order statistics, when data that originates from the

alternate hypothesis is passed through the PIT of the prior Gamma distribution. Somehow,

the transformation of the data has a different characteristic than when is it passed thru a

PIT based on a null hypothesis with, say, a prior Exponential distribution. Also, further

research is needed to investigate how high to set n and r in experimental design, in order to

gain possible advantages in lower time on test, lower cost, and fewer failed items as a result

of the experiment. For example, if a budget can afford 25 items failing, perhaps it would be

more effective to put 50 items on test, knowing ahead of time that if the desired increase

in /z is present, it should be evident by about the, say r = 1 0 th, failure and the test can be

terminated around that point. Thus, the potential for time savings and component savings

are evident. Finally, one of our goals was to find the exact power functions instead of using

simulation to compute power. Due to the complexity of sending data from one distribution

thru the PIT of another, the resulting transformations were so complicated that we could

only find the exact power function for the Exponential prior with r = 2. Clearly there is a

need for this new statistic and this new methodology as well as a need for further research
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in this area.

Appendix

In this section we will show the computations needed to find the p-value listed in the exam-

ple of the "Implementations" section of the paper. Recall an existing treatment is known

to have a recovery time X distributed according to the Gamma(2.1, 4.41) rv with PDF

f(x) = 2.565595 x1.41e- 2.x, 0 < x < cc, and CDF, calculated in APPL of,
4100000 41 1 159 21F (x) 1 68480010 x-2'1-021010255e-220x[82181 WhittakerM( A14 2 x66987458901 20 200' 10

+14322WhittakerM(-4 141 21 X)X + 132300WhittakerM(-'4 ,41 21

200' 200' 10 200' 200' 10

-71610 x WhittakerM(-9o-9, 2141, 2' x) - 82181 WhittakerM( 59,200 1X)

200 200 10 200' 200'1

+92610 x3 WhittakerM( 4
1 ,421 x) - 44100x 2 WhittakerM(i9 L4-1, 10 x)]/ 41

20200 10 20201 0

0 < x, relying on Maple's WhittakerM function, a solution to a differential equation. An

experimental treatment is given to n = 25 patients in hopes of showing an improved re-

covery time. The null hypothesis is that Fnew = Fold and the alternate hypothesis is

that Fnew < Fold. The first five recovery times (in years) are noted to be 0.40, 0.54,

0.66, 0.75, 0.84 years. The algorithm first transforms these data values thru the Gamma

CDF, z(i) = F(x(j)), i = 1, 2,..., 5 (the first PIT) to come up with five transformed values

0.005202791275, 0.01549350642, 0.03082310670, 0.04677731189, 0.06666297196.

For each of the z(j) it is necessary to calculate the appropriate conditional order statistic

CDF so that the unordered uniform variates can be calculated. The first data point has CDF

Fx() (x) = X2 - 25 X 24 + 300 X23 - 2300 X 2 2 + 12650 X21 - 53130 X2° + 177100 x19

-480700 Xls + 1081575x 17 - 2042975 X16 + 3268760 xi5 - 4457400 X14

+5200300 x13 - 5200300 X12 + 4457400 x11 - 3268760 x 1° + 2042975 x9

-1081575 X8 + 480700 X7 
- 177100 X6 + 53130 x5 - 12650 X4 + 2300 X3 - 300 X2

+25 x,
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for 0 < x < 1. Thus the first iid U(0,1) p-value (from the second PIT) isp1 = Fx(1) (0.005202791275)

0.1222639202. The second data point comes from the truncated, order statistic from the uni-

form(0, 1) distribution with n = 19 and r = 1 truncated on the left at z(i) = 0.005202791275.

The CDF for this point is

F(x) = -1.1334 X
2 4 + 27.2008 X 23 - 312.8093 x 22 + 2293.9350 x 21 - 12043.1589 x 20

+48172.63 x'9 - 152546.68 x18 + 392262.89 x 17 - 833558.64 x 16 + 1481882.03 x15

-2222823.1 x14 + 2829047.5 x13 - 3064801.48 x12 + 2829047.52 x" - 2222823.05 x1

+1481882.03 x9 - 833558.64 x8 + 392262.89 x7 - 152546.68 x6 + 48172.64 x5

-12043.158 x4 + 2293.935 x3 - 312.809 x2 + 27.201 x - 0. 1334,

for 0.005202791275 < x < 1. The second p-value is p2 = F(0.01549350642) = 0.2208579439.

Similarly the third data point comes from the truncated, order statistic uniform(0, 1) distri-

bution from n = 18 and r = 1 truncated on the left at Z( 2 ) = 0.01549350642. The CDF for

this point is

F(x) = 1.4320 x 23 - 32.9382 X22 + 362.3206 x21 - 2536.2444 x 20 + 12681.2221 x19

-48188.644 x18 + 144565.93 x17 - 351088.693 x16 + 702177.387 x15 - 1170295.64 X14

+1638413.90 x13 - 1936307.34 x12 + 1936307.34 x" - 1638413.90 x1° + 1170295.64 x9

-702177.387x 8 + 351088.693 x 7 
- 144565.933 x 6 + 48188.64 x5 - 12681.22 x 4

+2536.2444 x3 - 362.3206 x2 + 32.9382 x - 0.4321,

for 0.01549350642 < x < 1. The third p-value is p3 = F(0.03082310670) = 0.3029840349.

Likewise, the fourth data point comes from CDF

F(x) = -1.9913 X22 + 43.8082 x 21 - 459.9860 x 20 + 3066.5750 x19 - 14566.2312 xi8

+52438.432 x17 - 148575.559 X16 + 339601.278 x15 - 636752.396 xl4 + 990503.727 x13

-1287654.85 x 12 + 1404714.37 x11 - 1287654.85 x 1° + 990503.73 x9 - 636752.396 xs

+339601.2779 x7 
- 148575.5591 x6 + 52438.4326 x5 - 14566.2313 x 4 + 3066.5750 x3

-459.98625 x2 + 43.8082 x - 0.99128,

for 0.03082310670 < x < 1. The fourth p-value is p4 = F(0.04677731189) = 0.305920807.
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Finally, the fifth data point comes from the CDF

F(x) = 2.7348 x2
1 - 57.4298 x20 + 574.2983 x1 9 - 3637.2224 x18 + 16367.500 x17

-55649.502 x16 + 148398.674 x 5 - 317997.158 X1 4 + 556495.027 x13 - 803826.151 x12

+964591.381 x11 - 964591.381 x 10 + 803826.151 x9 - 556495.027 x + 317997.158 x7

-148398.674 x6 + 55649.503 X5 - 16367.5001 x4 + 3637.222 x3 - 574.2982 x2

+57.4298 x - 1.7347,

for 0.04677731189 < x < 1. The fifth p-value is p5 = F(0.06666297196) = 0.357716701. The

test statistic is the sum of the iid uniforms, t = pl + p2 + p3 + p4 + p5 = 1.309743407, and

has a CDF based on the null hypothesis of that of convolution of five Uniform(0, 1) random

variables:

0 x<0

1 5<x<l

1+ 5X2 X3+ 5 X41 X5 X 1<x<2

F(x) 1 155 5 2 535 4 X5 2<x<3

141_ 655 X +6•2-_ 55X3+5 1_X5 3< x <4
8 T 4 12- 8 T

601 6L25X 125 225 I3 54 124 2 2X 210 4 < x< 5
1 5< x <oo

The lower tail p-value is therefore F(1.309743407) = 0.0319993056, a low p-value suggesting

the recovery time for the new treatment is lower than that of the existing treatment.
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Tables and Figures

Table 1: Distribution families, parameters, mean and variances for Monte Carlo Simulation

Normal Distribution, Ho :/I = 1, fixed a = 1

IAa -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

Exponential Distribution, Ho : A - - 1

Aa = 1 0.4 .6 0.7 0.8 0.9 1.25 1.5 1.9 2.3 2.7Pza

Gamma Distribution, Ho : a = = 2.1,/3 = 4.41 fixed a = 1

aa =/a 1.1 1.3 1.5 1.7 1.9 2.3 2.5 2.7 2.9 3.1

Oa 1.21 1.69 2.25 2.89 3.61 5.29 6.25 7.29 8.41 9.61
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Normal Power Simulation, N = 25, r =5 (5) 25

Power

Full sample T
Full sample T

0.9

0.8

0.7-

0.6,
TrilO

T-=15,20,25

0.5-

0.4.

Tr5T 5

0.3-

0.2-

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 1: Results of Monte Carlo power simulation with underlying normally distributed

data, a = 1 and type I error a = 0.05. Under H0 , p = 0. Only the T,' results are shown.

Notice how well behaved the power functions are, in that higher r produced higher power.
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Exponential Power Simulation

FP-r

1.000 S~ Full Sample

and T.25

0.900 T_-20

A-D Full and A-Dr- 2 s
0.800- T,15

0.700.

A-13,20 .'

0.600 • T_10
A-D-15 'W "

0.500 A-DrjO

Tr-5

0.400- A-Dr5 AD

0.300•

0.200•

0.100•

0.000-
0.3 0.8 1.3 1.8 2.3 2.8

Figure 2: Results of Monte Carlo power simulation with underlying exponential distributed

data with type I error a = 0.05. Under H0 , the exponential distribution has parameter

A = = 1. Thus, the upper tail test applies to the lower Aa values. Notice that, like

the Normal distribution, higher power is achieved for higher r values. Also notice how Tr

achieves higher power than A 2, except for low values of Aa (high values of 1).
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Gamma Power Simulation
Power

Enlarged Area

Full sample T ..

0.9 /,

"0.8 Full sample A-D

0.7 r-10

0.6 -5.1

0.5 2
-25

--- -- --

0.4 "A

A-D1 2 5

0.2-

0.1 - •

0
1 1.5 2 2.5 3

Figure 3: Results of Monte Carlo power simulation with underlying Gamma distributed

data, a - 1 and type I error a = 0.05. Under H0 , the Gamma distribution has parameters

a = 2.1 and 3 = 4.41. Here the counter-intuitive result of higher power comes from

r = 10 and then decreases as r > 10 for both the Tr and the A2 test statistics. This

phenomena is evident in the enlarged area shown in figure 4.
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Enlarged area of Gamma power
Power

%. 
Full Sample TFulSampleul

A-D rT,15

0.7

A 1 % T•
2 5

' A-13 _15, i,'

0.5
A-D,.,.

20

Simulated in further
detail, see Figure 5

0.41.5 
2

Figure 4: This enlarged area shows clearly the case that Tr, 10 has higher power than even

the full sample T,=25. Thus we see the counter-intuitive result that under certain conditions

an experiment can actually achieve higher power with a censored sample than with a full

sample. Further investigation of this phenomenom at a higher resolution of r is found in

Figure 5.

23



f ower
New Statistic,

New Method (Censored Sample)

0.9 -
Old Statistic,

0.4 4 Z, / old Method (Cenore Sample )

0.8-

0.7

0.6

p/

New Statistic,
0.4 Old Method (Full Sample)

Old Statistic,
0.3- Old Method (Full Sample)

0.2

0.1

r

0
0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 5: In an in depth experiment suggested from Figure 4, here is a plot of r versus power

for each value of r = 1 (1) 25 for pa < 10. Note the two phenomena that 1) power increases

on r then decreases for both statistics and 2) the special cases at r = 6, 7, 8, 9, and 10 where

higher power is achieved in a censored sample than with a full sample.
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The process for getting exact inference on right censored samples during a life test.

1. Requirements
"* Maple Software, Commercially available from Waterloo, Maple Inc. , Waterloo, Canada.
"* APPL Software, public domain software, available at www.usma.edu/math/Teople/glen
0 A working knowledge of basic probability, statistics, and reliability engineering.
"* A beginner's understanding of the use of Maple and APPL

2. Process execution:
* Before the experiment, the experimenter has 1) a well defined, currently existing item/ process/ drug/

system with fully specified lifetime distribution function, and 2) a new item/ process/ drug/ system that
is hopefully better than the current one.

* The experimenter places n of the new items on life test, and records the failure times of the new items
as they occur.

* At each occurrence of failure, the experimenter enters the newly noted failure time into a list of
previously noted failure times and re-executes the CensoredT command to get the most up-to-date
statistical P-value so far.

p When the statistical P-value is sufficiently small (often times smaller than 0.01) there is exact
statistical evidence that the new item/process /drug/system is better than the current one.

3. Example:
* A current light bulb has a well defined mean life of 1000 hours and is adequately described by the

exponential random variable with parameter 1/1000. An experimenter wants to show that a new light
bulb has a higher mean life.

* The experimenter places n=35 new versions of light bulbs on life test and notes the following failure
times. The first bulb fails at time 49 hours, the second at time 72 hours, the third at time 115 hours, and
the fourth at time 197 hours.

* The P values after each successive failure are in order: .255, .203, .113, .034.
* At this point we have significant evidence(at least at the .05 level of significance) to conclude that the

new light bulbs have a longer mean life.
* We can thus stop the test at time 197 hours, as opposed to waiting for the total experiment to end,

which would be at about 4146 hours, if the new light bulb is no better that the old(longer if the ones are
better).

* In a Maple work sheet, the steps to this example and the results are found on the following page.
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> restart;

> read('d:/APPL/appl.txt'); read(-d:\CensoredT.txt');

>X:=ExponentialRV(1/1000.);

(-.001000000000,c)

X:= [[x --* .00 1000000000e 1 0, oo] ["Continuous', "PDF]]

>data:=[49];

data: [49]

>CensoredT(X,data,35);

.7446193251,.7446193253,.2553806747

>data:=[49,72J ;CensoredT(X, data,35);

data:= 49, 72]

1.362546169, .7968263065,.203 1736935

>data:=[49,72,115] ;CensoredT(X, data,35);

data: [49, 72, 115]

2.120590359,.886649768, .113350232

>data:=[49,72,115,197];CensoredT(X, data,35);

data: [49, 72, 115, 197]

3.048079409, .96578695Q .034213050

26



The original distribution assumptions can be other than the exponential. However for Normal, Weibull,
Gamma, and Beta distributions in particular cases the computational burden may be too high or has a result that
cannot be evaluated. This process does not work for prior distribution assumptions that are discrete.
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